Science and Technology at DuPont
DuPont: A History of Innovation & New Products

Transforming from a successful technology driven chemicals and polymers company to a market driven, science based, sustainable materials company

Lycra®
Nomex®
PET bottles
Teflon®
Tyvek®

Zytel®
Kevlar®
Sorona®
Pioneer Seed
Advanced energy systems

Auto parts
Storm room
From corn

Lycra® is a trademark of Invista™, a subsidiary of Koch Industries
The Vision of DuPont

Driven by Innovation

To be the world’s most dynamic science company, creating sustainable solutions essential to a better, safer, healthier life for people everywhere.
DuPont Mission – Sustainable Growth

The creation of shareholder and societal value while we reduce the environmental footprint along the value chains in which we operate.

* DuPont defines “footprint” as all injuries, illnesses, incidents, waste, emissions, use of water and depletable forms of raw materials and energy.
DuPont Products Meeting Growing World Needs

2009 Revenue
$26.2 B

Agriculture / Food 34%
Construction Materials 10%
Electronics 8%
Textiles / Home Furnishings 3%
Motor Vehicles 19%
Other 16%
Plastics & Chemicals 8%
Aircraft & Aerospace 2%

2009 Revenue $26.2 B
Global Sales – Reporting Segments

2009 Sales: $26.1B

- Performance Materials, $4.8
- Performance Coatings, $3.4
- Performance Chemicals, $5.0
- Agriculture & Nutrition, $8.3
- Electronics & Communications, $1.9
- Safety & Protection, $2.8
- Other, $0.2
Global Sales – Regional Highlights

Full year

2009 Sales: $26.1B

30% of 2009 Revenue came from Emerging Regions

Up from 29% in 2008

2009 Full Year Sales Distribution

<table>
<thead>
<tr>
<th>Region</th>
<th>2009 Sales</th>
<th>2008 Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>9.9</td>
<td>11.0</td>
</tr>
<tr>
<td>Canada</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Developed Europe</td>
<td>5.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Developed Asia</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Latin America</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Emerging Asia</td>
<td>3.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Emerging EMEA</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>26.1</td>
<td>30.5</td>
</tr>
</tbody>
</table>

3.6 3.2

Latin America

12%

Developed Asia

8%

Emerging Asia

11%

Emerging EMEA

7%

US

39%

Global Sales – Regional Highlights

Full year

2009 Sales: $26.1B

30% of 2009 Revenue came from Emerging Regions

Up from 29% in 2008

2009 Full Year Sales Distribution

<table>
<thead>
<tr>
<th>Region</th>
<th>2009 Sales</th>
<th>2008 Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>9.9</td>
<td>11.0</td>
</tr>
<tr>
<td>Canada</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Developed Europe</td>
<td>5.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Developed Asia</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Latin America</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Emerging Asia</td>
<td>3.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Emerging EMEA</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>26.1</td>
<td>30.5</td>
</tr>
</tbody>
</table>

3.6 3.2

Latin America

12%

Developed Asia

8%

Emerging Asia

11%

Emerging EMEA

7%

US

39%

Global Sales – Regional Highlights

Full year

2009 Sales: $26.1B

30% of 2009 Revenue came from Emerging Regions

Up from 29% in 2008

2009 Full Year Sales Distribution

<table>
<thead>
<tr>
<th>Region</th>
<th>2009 Sales</th>
<th>2008 Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>9.9</td>
<td>11.0</td>
</tr>
<tr>
<td>Canada</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>Developed Europe</td>
<td>5.2</td>
<td>7.2</td>
</tr>
<tr>
<td>Developed Asia</td>
<td>2.2</td>
<td>2.7</td>
</tr>
<tr>
<td>Latin America</td>
<td>3.2</td>
<td>3.6</td>
</tr>
<tr>
<td>Emerging Asia</td>
<td>3.0</td>
<td>2.6</td>
</tr>
<tr>
<td>Emerging EMEA</td>
<td>1.9</td>
<td>2.5</td>
</tr>
<tr>
<td>Total</td>
<td>26.1</td>
<td>30.5</td>
</tr>
</tbody>
</table>
Megatrends
Driven by World Population Growth

Global Population
Billions of People

Source: 2008 World Population Data Sheet:
www.prb.org.
Megatrends → Opportunities

Megatrend

<table>
<thead>
<tr>
<th>Increasing Food Production</th>
<th>DuPont Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds, Crop Protection Products, Food and Nutrition Products, Food Packaging Materials</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decreasing Dependence on Fossil Fuels</th>
<th>DuPont Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV, Fuel Cell Components, Energy Efficient Tyvek® Materials, Light Weight Polymer Composites for Transportation, Biofuels, Biomaterials</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Protecting Lives and the Environment</th>
<th>DuPont Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kevlar®, Nomex® and Tyvek® for Worker Protection, SentryGlas®, Safety Services, Environmental Protection Material Solutions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Growing in Emerging Markets</th>
<th>DuPont Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Products, Materials for Construction and Infrastructure Projects, Coatings, Photovoltaics, Food Packaging</td>
<td></td>
</tr>
</tbody>
</table>
R&D Investment

$1.4 billion in 2009

Chemistry
Engineering
Materials Science
Nanotechnology
Industrial Biotech
Ag Biotech

~15%
~14%
~12%
~9%
~50%

INCREASING FOOD PRODUCTION

DECREASING DEPENDENCE ON FOSSIL FUELS

PROTECTING LIVES

CHEMICALS AND MATERIALS

ELECTRONICS

R&D investment highly focused on the megatrends
Top Initiatives Across DuPont

Examples

Increasing Food Production
- Optimum® AcreMax™
- Emerging Region Rice, Corn, Wheat
- Optimum ® GAT®
- Nitrogen use efficiency
- Omega-3
- High oleic soy
- Seed Coatings
- Drought tolerance
- Cyazapyr™ insecticide
- MAT 28 Herbicide
- Removable Antimicrobial Coatings
- Kevlar® growth
- Waterborne Paints
- Communication cabling
- Clean Technologies
- Personal protection garments

Decreasing Fossil Fuel Dependence
- Biofuels
- Bio-PDO™
- Renewable packaging
- Renewable engineering resins
- Vehicle Light-weighting
- BIPV
- Thin Film PV materials
- PV: Apollo
- Low GWP Refrigerants
- Lead-free electronics
- Gen X
- OLEDs
- Next Gen TiO2 grades
- Kalrez® for aerospace
- Energy efficient lighting

Protecting Lives & Workplaces
- Biofuels
- Bio-PDO™
- Renewable packaging
- Renewable engineering resins
- Vehicle Light-weighting
- BIPV
- Thin Film PV materials
- PV: Apollo
- Low GWP Refrigerants
- Lead-free electronics
- Gen X
- OLEDs
- Next Gen TiO2 grades
- Kalrez® for aerospace
- Energy efficient lighting

Sustainable Solutions
- Chemistry
- Energy Storage materials
- Energy efficient TiO2 mfg.
- Optimum®
- GAT®
- FermaSure®
- Next Gen TiO2 grades
- Renewable packaging
- Renewable engineering resins
- Vehicle Light-weighting
- BIPV
- Thin Film PV materials
- PV: Apollo
- Low GWP Refrigerants
- Lead-free electronics
- Gen X
- OLEDs
- Next Gen TiO2 grades
- Kalrez® for aerospace
- Energy efficient lighting
DuPont Core Technologies

Engineering, Analytical Science, Scientific Computing, Modeling & Simulation, Toxicology, Environmental Science, Regulatory Science, Application Development

- Chemical Sciences
- Biological Sciences
- Material Sciences
- Enabling Technologies
DuPont Uniqueness: Integrated Science

Innovation occurs at the nexus of disciplines and markets.

DuPont is uniquely positioned to innovate in a renewable economy:

• Critical mass of **Core technology**
• Leveraged **enabling competencies**
• Complementary **external capabilities**
• **Integration** mindset

DuPont Core Technologies

[Diagram showing various technologies and disciplines including:
- Particle & Dispersion Science
- Fluoro Chemical & Polymer Synthesis
- Inorganic / Organic Synthesis
- Biochemistry
- Metabolic Engineering
- Gene Recombination & Regulation
- Agronomy
- Genomics
- Catalysis
- Coating & Color Science
- Rheology Control
- Fermentation Engineering
- Plant Physiology / Disease
- Cell / Tissue Culture
- Precision Paterning
- Surface & Colloidal Science
- Inorganic-Organic Companies
- Molecular Biology
- Protein Engineering
- Fiber Science & Engineering
- Polymer Processing
- Chemical Engineering
- Microbiology
- Conventional Breeding
- Film Fabrication
- Nanoscience
- Plant Genetics
- Plant Breeding

© 2010 E.I. du Pont de Nemours and Company. All rights reserved.

June 2010
The Global Scope of DuPont R&D

- >5,000 Scientists and Engineers
- $1.4 B R&D Spend
- Over 50 R&D Centers, Worldwide
DuPont R&D: Managing a Balanced Portfolio

Central Research Portfolio
- Corporately Funded
- Tied to Business Strategies
- High Challenge / High Reward

Business Unit Portfolio
- Business Self-Funded
- Tied to 1-5 Year Goals

Total R&D: $1.4 Billion

15%

85%
The Experimental Station

- DuPont’s primary R&D facility
- Established in 1903
- Over 2,200 employees
- Location of Central Research & Development and numerous business R&D groups
- 62 hectares (150 acres) of land
- 52 buildings totaling 250,000 square meters
Experimental Station Inventions

- NYLON INTERMEDIATES
- TIO₂ PROCESS
- INK JET TECHNOLOGY
- H₂SO₄ PROCESS
- NEW HARVEST™
- SORONA®
- KEVLAR®
- NOMEX®
- LYCRA®
- TYVEK®
- ORLON®
- PET BOTTLES
- HYPALON®
- ELVACITE®
- ELVAMIDE®
- BUTACITE®
- SELAR® RB MINLON®
- SUPERTOUGH NYLON
- SUPERTOUGH DELRIN®
- DUPONT’S GLASS REINFORCED NYLON
- ZENITE® LCP ZYTEL® DMX
- RELIANCE®, LONDAX®, GLEAN®, ACCENT®, PLENISH™
- COZAAR®
- SUSTIVA®
- NORDEL®
- HYTREL®
- VITON®
- KALREZ®
- VAMAC®
- NOBEL PRIZE WORK
- CHARLIE PEDERSEN
- NYLON, PVC, PET, NEOPRENE, DACRON®
- TEFLON® DISPERSION
- 2,4-D HERBICIDES
- UREA HERBICIDES
- COLLOIDAL SILICA
- VAZO®
- NYLON AND POLYESTER
- CFC ALTERNATIVES
- QUALICON®
- BAX®, RIBOPRINTER
- RISTON®
- CYREL®
- THE MIRACLES OF SCIENCE
Biochemical Science & Engineering

Competencies:

• Molecular Biology
• Microbiology
• Material Science
• Protein Engineering
• Metabolic Engineering
• Fermentation Engineering
• Process Engineering

Focus areas:

• Sustainable Materials
• Cellulosic Ethanol
• Advanced Biofuels
• Aquaculture
• Human Nutrition
• Personal Care
• Disinfectants

Bio-PDO™

The leading edge of industrial biotechnology for sustainable materials production - Loudon, TN facility

Renewably-sourced and advanced biofuels

A new bio-based technology for surface modification with applications in a variety of markets

A clean and sustainable source of omega-3 fatty acids
Chemical Science and Engineering

Competencies:
- Organic synthesis
- Polymer Science and Engineering
- Chemical Engineering fundamentals
- Process Development and scaleup
- Structure Property Relationships
- Inorganic Chemistry
- Fiber Science and Engineering

Focus areas:
- Integration of chemistry biology and engineering for:
 - cellulosic based biofuels
 - renewably sourced monomers and polymers
- Novel product and processes for the DuPont Safety and Protection platform
- Breakthrough sustainable performance materials

Removable Antimicrobial Coatings

Biomass pretreatment technologies
Materials Science & Engineering

Competencies:
- Organometallic chemistry
- Polymer synthesis
- Fluorochemistry
- Nanomolecule manipulation
- Materials optics
- Precision patterning
- Dispersion science

Focus areas:
- IC fab & packaging materials
- Photovoltaics and Alternative energy
- Displays & Light management materials
- Biomedical materials
Corporate Center for Analytical Sciences

Competencies:
- Microscopy
- Vibrational Spectroscopy
- X-Ray
- Wet Chemistry
- Thermal Analysis
- Surface & Particle Science
- Metals Analysis
- Physical Measurements
- Molecular Weight & Rheology
- Nuclear Magnetic Resonance
- Separations & Mass Spectrometry

Focus areas:
- Methods Development
- Problem Solving / Integrated Solutions
- Regulatory Analytical
- Leveraged Analytical Support
Haskell Global Centers for Human Health and Environmental Sciences

Focus areas:
- Human health
- Environmental fate
- Ecotoxicology
- Risk assessment & modeling

Competencies:
- Toxicology & Pathology
- Neurobehavioral Toxicology
- Immunotoxicity/ Sensitization
- Endocrine
- Biochemistry & Metabolism
- Genetic & Molecular Toxicology
- In vitro methods & alternatives
- Acute and chronic Ecotoxicology
- Bioaccumulation studies
- Environmental fate studies
- Environmental exposure modeling
- In Silico Profiling
- Risk assessment

World recognized leader in industrial toxicology and product safety assessment

1935 Original Haskell Laboratory
Advancing Science for 75 Years

Providing safety testing, research, & consulting to all DuPont Businesses

Green algae
Daphnia
Bioassays For Aquatic Safety

Simulating Biodegradation in the Landfill
Landfill Simulation

Landfill microbial culture with 0.15 g ground refuse

Gas bag
Gas control valve
Leachate
Sampling position
Landfill refuse

A landfill simulation vessel in work position; Refuse: ~0.7 kg, dH₂O: ~1 liter

June 2010
DuPont Engineering Research & Technology

Competencies:

- **Product Design & Development**
 - Engineering Mechanics; Mechanical Systems Design & Development; Particle Processing

- **Process Engineering**
 - Advanced Modeling Technologies; Materials Engr.; Polymer, Dispersions & Interfaces; Process Dynamics & Control; Measurement Systems Technology; Reaction Engr.; Heat, Mass & Momentum Transfer; Agitation: Mixing, Fluid Flow; Thermodynamics; Engr. Evaluations

- **Safety, Health & Environment**
 - Environmental Engr.; Process Safety & Fire Protection; Explosion Hazards Lab; Sustainability

- **Operations/Support**
 - Six Sigma/Quality Mgmt.; Energy Engineering; Mechanical Systems; Rotating Machinery; Lean Technology & Operations Modeling; Applied Statistics

Focus areas:

- Critical engineering skills - Leveraged to solve urgent business & operations issues (Permitting, Value Accelerators, Process Improvement)
- Centers of Competency - assure capabilities, systems and improvement are in place across DuPont (Energy, A&PC, M&A, Mfg. Tech.)
- Engineering support for new business opportunities (Applied Bioscience, Safety & Protection)
Market Driven Innovation

Focus Areas

- Market Opportunity
- Differentiated Value Proposition
- Commercialization Plan
Partnering for Growth

External Partnerships
- Global Corporations
- National Labs
- Universities
- VC-Backed Start-ups

Numerous examples in our development pipelines

“Open Innovation”

DuPont’s Technology Reservoir

Market Knowledge
Productization
Integrated Solutions

Customers

Internal

Central Research Laboratories
- Strategic Business Unit Research
- Regional Technology Centers
Partnerships Accelerating Time to Market

A few Examples:

<table>
<thead>
<tr>
<th>Technology</th>
<th>Partner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomedical Materials</td>
<td>DuPont-MIT Alliance</td>
</tr>
<tr>
<td>Biorefinery Solutions</td>
<td>NREL, MSU, Deere, Danisco</td>
</tr>
<tr>
<td>Next gen. Biofuels</td>
<td>BP</td>
</tr>
<tr>
<td>Nanotechnology</td>
<td>ISN, MIT, CBEN, NCL</td>
</tr>
<tr>
<td></td>
<td>Lawrence Berkeley National Laboratory/Nanomix</td>
</tr>
<tr>
<td>Ag-Biotech</td>
<td>Rockefeller University, Arcadia, Mendel, Cold Spring Harbor</td>
</tr>
</tbody>
</table>
DuPont Holds Lead Position Since Inception of the Analysis

<table>
<thead>
<tr>
<th>RANKING</th>
<th>Technology Strength™</th>
<th>Company</th>
<th>Patents Granted*</th>
<th>Science Strength™</th>
<th>Research Intensity™</th>
<th>Innovation Cycle Time™</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>13-week avg to Feb. 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>363.1</td>
<td>DuPont</td>
<td>615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>166.6</td>
<td>BASF SE</td>
<td>446</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>138.7</td>
<td>Dow Chemical</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>119.2</td>
<td>Honeywell Int’l</td>
<td>172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>111.7</td>
<td>3M Co</td>
<td>112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>97.4</td>
<td>Saudi Basic Industries</td>
<td>124</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>79</td>
<td>Nitto Denko Corp</td>
<td>130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>78.8</td>
<td>Lyondell Basell Ind</td>
<td>102</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>74.3</td>
<td>Chisso Corp</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>66.9</td>
<td>LG Chem Ltd</td>
<td>156</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TECHNOLOGY STRENGTH: An aggregate rating measuring the overall quality of a company's patent portfolio.

SCIENCE STRENGTH: An aggregate rating measuring the degree to which a company's portfolio is linked to core science.

RESEARCH INTENSITY: Measures degree to which the company's technologies are building on core science.

INNOVATION CYCLE TIME: How quickly a company's portfolio is innovating on the latest technologies in years. Lower is better.
2009: Record Year for Launches & Patent Filing

- US Patents Granted Annually:
 - 2000: 400
 - 2009: 592
 - '06-'09 Avg. 548

- US Patent Filings:
 - 2000: 600
 - 2001: 1100
 - 2002: 1600
 - 2003: 2100
 - 2004: 2600
 - 2005: 3100
 - 2006: 3600
 - 2007: 4100
 - 2008: 4600
 - 2009: 5100

- New Products Commercialized:
 - 2004: 800
 - '06-'09 Avg. 1167
 - 2009: 1451

- % Sales From New Products:
 - 2000: 22% of total sales
 - 2009: 30% of total sales
 - > 38.5% of total sales

- DuPont Record of Sustained Innovation:
 - > 38.5% of total sales
 - ~ $10B New Product Revenue in 2009

- New Product Sales % Total:
 - 2009: 30% of total sales
 - 2009: 22% of total sales

© 2010 E.I. du Pont de Nemours and Company. All Rights Reserved.
The miracles of science™
Other DuPont Reference Material
DuPont Founded in 1802

Under the encouragement of Thomas Jefferson, Eleuthere Irenee du Pont founds E.I. du Pont de Nemours & Co. Structured as a family partnership, DuPont with $36M raised from investors, built powder mills on 96 acres alongside the Brandywine in Wilmington, Delaware. First year sales were $15,116.
DuPont in 1802

40 employees
1 site
1 country
1 product
12 customers
$15,116 in sales (1804)

DuPont in 2010

58,000 employees
> 210 sites
> 70 countries
Hundreds of thousands of DuPont products & customers
$26.1B in sales (2009)
Initial Role of ESL

1902 - 1918: transformation of DuPont from a black powder to chemical manufacturing company

1903: Experimental Station founded, first focus on

- Cellulose chemistry
- Ammonia synthesis

Nitrocellulose (Smokeless Powder)

- Acids
- Nitrates
- Ammonia
- Fertilizers
- Cellulose
- Celluloid (plastic)
- Rayon (fiber)
- Cellophane (film)
- Duco (finishes)
- Diphenylamines
- Dyes
- Intermediates
Transforming for our 3rd century

more than 200 Years of Innovation

Integrated Science
- Biology
- Chemistry
- Materials Science
- Nanoscience

Birth

Explosives

Growth

Chemistry, Energy

Maturity

2009

1802 1830 1850 1900 1925 1945 1990 2000 2050 2090
DuPont Core Values

- Safety & Health
- Environmental Stewardship
- Highest Ethical Standards
- Respect for People

“The Goal is Zero”
DuPont 2009 Sales by Segment -- $26.1B*

$8.3 B
DUPONT AGRICULTURE & NUTRITION
Pioneer Hi-Bred
Crop Protection
Nutrition & Health

$3.4 B
DUPONT PERFORMANCE COATINGS
Core Markets:
• Automotive OEM
• Collision Repair
• Industrial Coatings

$1.9 B
DUPONT ELECTRONICS & COMMUNICATIONS
Core Markets:
• Consumer Electronics
• Advanced Printing
• Photovoltaics
• Displays

$4.8 B
DUPONT PERFORMANCE MATERIALS
Performance Polymers
Packaging & Industrial Polymers

$5.0 B
DUPONT PERFORMANCE CHEMICALS
Titanium Technologies
Chemicals & Fluoroproducts
Core Markets:
• Construction
• Specialties
• Industrials & Chemicals

$2.8 B
DUPONT SAFETY & PROTECTION
Protection Technologies
Building Innovations
Sustainable Solutions
Core Markets:
• Industrial Personal Protection
• Construction & Industrial
• Military & Law Enforcement

* Includes $.1B in “other” sales including Applied BioSciences. Total company sales exclude transfers.
Established in 1903, the DuPont Experimental Station was one of the earliest industrial research laboratories in the United States. Its objective was to investigate cellulose chemistry so that DuPont could grow from explosives into new fields. In 1911 the Chemical Department, forerunner of DuPont Central Research & Development, was organized as a separate unit. Work was subsequently begun on ammonia synthesis.

A formal program of basic research in physical and organic chemistry, physics and chemical engineering was initiated in 1927. This program brought spectacular results in the early 1930s: synthesis of the first linear crystalline superpolymers which could be oriented to strong filaments (leading directly to the introduction of nylon) and the synthesis and polymerization of 2-chloro-1,3-butadiene (leading to the commercialization of neoprene, the first general-purpose synthetic rubber). Basic research on viscose spinning led in 1934 to the commercialization of the first high-tenacity rayon tire cord, and research on the synthesis and polymerization of tetrafluoroethylene during the early 1940s led to commercial production of Teflon® TFE-fluorocarbon resin.

A major round of construction was carried out at the Experimental Station between 1948 and 1960, providing expanded facilities for a host of new research programs. Results of these programs during the 1950s included Hypalon® synthetic rubber (the culmination of work on the chlorosulfonation of polyethylene), two substituted ureas for industrial and agricultural weed control, and the discovery and development of polyimide polymers. Research at the Experimental Station also led to the development of Dycril® photopolymer printing plates, the first of many important DuPont innovations for the printing and electronics industries based on photopolymerization.

In the 1960s, researchers at the Experimental Station prepared the first cell-free biological extract capable of fixing atmospheric nitrogen, and developed Lycra® spandex fiber, a continuous filament elastic textile yarn used in bathing suits, sports wear, leisure wear and leotards. That decade also saw the discovery of ferredoxin, a biological electron-transfer agent of fundamental importance; and the development of products ranging from plastic fiber optics to superior catalyst supports for chemical process and pollution control.
During the 1970s, Experimental Station research resulted in the development of Kevlar® high strength aramide fibers; chromium dioxide magnetic particles for use in audio and video tape; and elastomeric relief plates for flexographic printing, which are prepared directly from film negatives and thus eliminate engraving and molding. A sampling of other major products developed at the Experimental Station during the 1970s includes Toves® water gels (non-nitroglycerin, water compatible, cartridge explosives), Lucite® dispersion lacquer and new procedures for the “aca” discrete clinical analyzer, which enables hospitals to analyze serum and other body fluids quickly and accurately.

The early 1980s and 1990s have seen a further expansion of facilities at the Experimental Station. Building 500, one of the two newest laboratory buildings, is an award-winning, state-of-the-art discovery chemistry facility.

In 2008, the company opened the DuPont Innovation Center, a market-back science incubator which co-locates the Applied BioSciences business next to the scientists creating the pipeline of renewably sourced products, including next generation biofuels and biomaterials such as Sorona® polymers, Susterra™ propanediol, and Cerenol™ polyols. The Innovation Center includes state-of-the-art features for energy efficiency and environmental stewardship, using more than 30 DuPont materials and employing a 37.8 kilowatt solar panel array on the roof that also uses many DuPont photovoltaic materials.

Today more than 2,000 scientists and researchers – including more than 500 with Ph.D.s – pursue science-powered innovations for global markets. Collaborating to build on a legacy of scientific discovery, DuPont scientists are developing innovations to help increase food production, reduce the dependence on fossil fuels and protect people and the environment from harm. These include DuPont™ Suva® refrigerants, the DuPont™ BAX® food safety systems, Plenish™ high oleic soy oil, New Harvest™ renewably sourced Omega-3 fatty acid supplement, high efficiency Solamet® photovoltaic metallization pastes, and RelyOn™ MultiPurpose Disinfectant Cleaner Solutions.

Research and development is now underway in areas that include nanotechnology, emerging displays technologies, crop genetics, and biomaterials produced from renewable resources such as corn. These developments could lead to foods that help prevent diseases and brittle bones, “smart” materials that can adjust performance on their own, microorganisms that produce biodegradable products and innovative materials for personal protection. Looking to the future, the Experimental Station remains one of the most advanced productive industrial research facilities in the world.

9/10
DuPont is seeking entry level Bachelor and Master Degree Engineers and Materials Scientists who desire to work at the leading edge of scientific fields and technologies in laboratory based Research and Development.

DuPont is a global company of people who make a difference in everyday life. Our core values are safety and health, environmental stewardship, highest ethical behavior, and respect for people. They are the cornerstone of who we are and what we stand for. Our vision is to be the world's most dynamic science company, creating sustainable solutions essential to a better, safer and healthier life for people everywhere. Our engineers work in research and development functions that range from basic and long term research supporting the business units to short term research for new product and process development.

DuPont offers you endless possibilities to use all of your professional and interpersonal skills to help us create the future together.

As an Associate Investigator, you will function as a part of a research and development team and assist the Principal Investigator in conducting experiments, using your knowledge of designing experiments, data analysis, and scientific testing methodologies to further our global science and technology leadership. You will routinely face challenges requiring excellent problem solving and decision making skills. You will be expected to interpret and analyze results, recognize erroneous or unexpected results, and make suggestions for the path forward based on your analysis and conclusions.

Candidates must have a strong work ethic, work well in team environments, and conduct their work in a safe and efficient manner. Major responsibilities may include: material/chemical process development, product formulation, raw material screening, method development, device fabrication, chemical synthesis, analytical testing, statistical analysis of data and presentation to internal and occasional external project teams.

The Associate Investigator positions are located at the DuPont Experimental Station in Wilmington, Delaware. DuPont offers a competitive salary and an outstanding benefits package. DuPont is an equal opportunity employer.

Qualifications:

- Bachelors or Masters degree in Chemical Engineering, Materials Science, Polymer Chemistry, or related field.
- The right to work in the U.S. without restrictions.
- Demonstrated ability to assemble lab equipment and utilize it to perform experiments.
- Demonstrated strong technical writing skills.
- Excellent oral and written communication skills.
- Demonstrated ability to self-manage time and resources to get results.
- Strong computer skills, particularly in spreadsheet applications.
- GPA of 3.0 or higher (on 4.0 scale).

Preferred Attributes:

- Relevant research, co-op, or internship experience.
- Experience with electronic lab notebook applications.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all products denoted with ® or ™ are registered trademarks or trademarks of E. I. du Pont de Nemours and Company or its affiliates.
We’re solving the world’s greatest challenges TOGETHER.

Contact Career Services to sign up now for an on-campus interview!

Apply Now: www.dupont.com/careers
Click on: “Jobs By Region; United States”
Select: “New Graduate, Internship or Co-Op Opportunities”

Job Number: BSMS-Eng-2011-2012
Associate Investigators – R&D Engineers (BS and MS Entry Level)

Minimum Requirements:
- BS or MS degree in chemical engineering, materials science, or related field
- Legal right to work in the United States without restrictions
- Overall GPA of 3.0 or higher (on a 4.0 scale)