Nearly right unitarity triangle and CP phase in quark and lepton flavor mixings

The nearly right unitarity triangle can be simply obtained if a quark mass matrix is written as a linear combination of real rank-1 matrices and the coefficient which gives the mass of the second generation is pure imaginary. Supposing that the source of the CP violation is in the Yukawa coupling to an additional Higgs field which provides a factor for the strange quark and muon mass ratio, we obtain that the angle alpha of the unitarity triangle shifts from 90 degree by units of V_ub/V_us, and is postdicted as alpha to be 87 or 91 degree. The Dirac CP phase delta which appears in the three-flavor neutrino oscillations is obtained as |delta| to be 80 degree if the neutrino mass matrix gives tri-bimaximal-like mixing form. If the factor 3 for the muon and strange quark mass is considered in a simple manner in the quark-lepton unification, we obtain three distinctive prediction of delta for nearly right-angled phase as |delta| to be 70, 90, or 110 degree in an idealistic orthogonal structure of the neutrino mass matrix. The deviation from 90 degree is roughly given by arcsin(1/3) by inputting the experimental measurements.