ABSTRACT
Ischemic stroke is caused by the sudden blockage of blood vessels in the brain leading to an ischemic region. This ischemic region causes massive cell death, inflammation, loss of function. Along with these negative outcomes, the brain also activates pro-repair pathways that generate plasticity in the region surrounding the stroke cavity. We propose that therapeutic angiogenic materials could effectively augment this pro-repair environment and lead to enhanced brain repair after stroke.

BIOGRAPHY
Tatiana Segura received her B.S. degree in Bioengineering from the University of California Berkeley and her doctorate in Chemical Engineering from Northwestern University. Professor Segura's Laboratory studies the use of materials for minimally invasive in situ tissue repair. On this topic, she has published over 80 peer reviewed publications. She has been recognized with the Outstanding Young Investigator Award from the American Society of Gene and Cell Therapy, the American Heart Association National Scientist Development Grant, and the CAREER award from National Science Foundation. She was Elected to the College of Fellows at the American Institute for Medical and Biological Engineers (AIMBE).